

Steven Holzner

Sobre o Autor

Steven Holzner lecionou Física na Universidade de Cornell por mais de uma década, ensinando milhares de estudantes. Ele é o autor premiado de vários livros, incluindo *Física Para Leigos®*, *Quantum Physics For Dummies* e *Differential Equations For Dummies*, além de livros de exercícios *para* os três títulos *For Dummies*. Formou-se no MIT (Instituto de Tecnologia de Massachusetts) e obteve seu doutorado pela Cornell, fazendo parte do corpo docente de ambos.

Dedicatória

Para Nancy, é claro.

Agradecimentos do Autor

O livro que você tem em suas mãos é produto do trabalho de várias pessoas. Eu gostaria de agradecer particularmente à Editora de Aquisições, Tracy Boggier, à Editora Sênior de Projetos, Alissa Schwipps, à Editora Sênior de Reprodução, Danielle Voirol, aos Editores Técnicos Laurie Fuhr e Ron Reifenberger, e às várias pessoas talentosas dos Serviços de Composição.

Sumário Resumido

Introdução	1
Parte 1: Entendendo os Fundamentos da Física	7
Capítulo 1: Entendendo Seu Mundo: Física II, a Sequência	
Capítulo 2: Preparando-se para a Física II	
Parte II: Fazendo Trabalho de Campo: Eletricidade e Magnetismo	35
Capítulo 3: Carregando Dispositivos com Eletricidade	
Capítulo 4: A Atração do Magnetismo	
Parte III: Pegando Ondas: Sonoras e Luminosas	113
Capítulo 6: Explorando Ondas	115
Capítulo 7: Agora Ouça Isto: A Palavra no Som	
Capítulo 8: Vendo a Luz: Quando a Eletricidade e o Magnetismo se Combinam	
Capítulo 9: Flexionando e Focalizando a Luz: Refração e Lentes	
Capítulo 10: Quicando Ondas de Luz: Reflexão e Espelhos	
Parte IV: A Física Moderna	
Capítulo 12: Preste Atenção ao que Einstein Disse: A Relatividade Especial	-
Capítulo 13: Entendendo Energia e Matéria como Partículas e Ondas	
Capítulo 14: Uma Pequena Visualização: A Estrutura dos Átomos	
Capítulo 15: Física Nuclear e Radioatividade	319
Parte V: A Parte dos Dez	339
Capítulo 16: Dez Experimentos de Física que Mudaram o Mundo	341
Capítulo 17: Dez Ferramentas On-Line para Resolução de Problemas	347
Índice	353

Sumário

Introdução
Só de Passagem
Penso que
Como Este Livro Está Organizado
Parte I: Entendendo os Fundamentos da Física
Parte II: Fazendo Algum Trabalho de Campo: Eletricidade e Magnetismo
Parte III: Pegando Ondas Sonoras e Luminosas
Parte IV: A Física Moderna
Parte V: A Parte dos Dez 4 Ícones Usados Neste Livro 5
Ícones Usados Neste Livro5
De Lá para Cá, Daqui para Lá5
Familiarizando-se com a Eletricidade e o Magnetismo10
Capítulo 1: Entendendo Seu Mundo: Física II, a Sequência9
Estudando as cargas estáticas e campo elétrico
Avançando para o magnetismo
Circuitos CA: A regeneração da corrente com campos elétricos e magnéticos11
Viajando nas Ondas
Convivendo com as ondas sonoras
Descobrindo o que é a luz
Reflexão e refração: Fazendo a luz saltar e curvar
Buscando imagens: Lentes e espelhos
Chamando a interferência: Quando a luz colide com a luz
Iluminando os corpos negros: Corpos quentes
produzem sua própria luz15
Acelerando com a relatividade: Sim, E=mc ² 16
Assumindo uma dupla identidade: A matéria também viaja em ondas16
Aprendendo o "α β γ" da radioatividade

Capítulo 2: Preparando-se para a Física II	19
Matemática e Medidas: Revisando Essas Competências Básicas	
Usando os sistemas de medida MKS e CGS	20
Fazendo conversões comuns	20
Usando a notação científica para encurtar números	24
Uma revisão da Álgebra básica	24
Usando um pouco de Trigonometria	25
Usando dígitos significativos	26
Atualizando Sua Memória Física	27
Mostrando o caminho com vetores	28
Avançando com a velocidade e a aceleração	29
Tática do braço-de-ferro: Aplicando alguma força	30
Explorando o movimento circular	30
Ficando elétrico com circuitos	32
Parte II: Fazendo Trabalho de Campo: Eletricidade e Magnetismo	35
Capítulo 3: Carregando Dispositivos com Eletricidade	37
Entendendo os Campos Elétricos	
Não dá para perdê-la: A carga é conservada	
Medindo cargas elétricas	
Os opostos se atraem: Forças de atração e repulsão	
Ficando Totalmente Carregado	
Eletricidade estática: Construindo excesso de carga	40
Verificando métodos de carregamento	41
Considerando o meio: Condutores e isolantes	43
Lei de Coulomb: Calculando a Força entre Cargas	44
Apresentando Campos Elétricos	45
Folhas de carga: Apresentando campos básicos	45
Analisando campos elétricos a partir de objetos carregados	47
Campos elétricos uniformes: Muita calma com	
os capacitores de placas paralelas	
Blindagem: O campo elétrico dentro de condutores	
Tensão: Percebendo o Potencial	
Entendendo os fatos concretos sobre potencial elétrico	
Verificando qual é o trabalho necessário para movimentar cargas	
Descobrindo o potencial elétrico de cargas	
Ilustrando superfícies equipotenciais para cargas pontuais e placas	
Armazenando Carga: Capacitores e Dielétricos	
Verificando a quantidade de carga que os capacitores podem armazenar	57

Armazenagem adicional com os dielétricos	58
Calculando a energia de capacitores com dielétricos	
Capítulo 4: A Atração do Magnetismo	61
Tudo sobre Magnetismo: Ligando Magnetismo e Eletricidade	
Loops dos elétrons: Entendendo os imãs permanentes e materiais magnéticos	
De norte a sul:Tornando-se polarizado	
Definindo campo magnético	65
Continuando: Forças Magnéticas sobre Cargas	66
Descobrindo a magnitude da força magnética	66
Encontrando a direção com a regra da mão direita	67
Uma direção preguiçosa:Verificando como os campos magnéticos evitam o trabalho	68
Entrando em órbita: Acompanhando partículas carregadas em campos magnéticos	69
Chegando ao Fio Elétrico: Forças Magnéticas em Correntes Elétricas	74
Da velocidade para a corrente: Obtendo a corrente na fórmula da força magnética	74
Torque: Dando um toque na corrente dos motores elétricos	76
Indo à Fonte: Obtendo Campos Magnéticos a partir da Corrente Elétrica	79
Produzindo um campo magnético com um fio reto	79
O centro das atenções: Encontrando campos magnéticos a partir de loops de corrente	82
Somando loops: Construindo campos uniformes com solenoides	84
Capítulo 5: Corrente e Tensão Alternadas	87
Circuitos e Resistores CA: Resistindo ao Fluxo	87
Verificando a lei de Ohm para tensão alternada	88
Calculando a média: Usando o valor eficaz da corrente e da tensão	89
Permanecendo em fase: Conectando resistores a fontes de tensão alternada	90
Circuitos e Capacitores CA: Armazenando Carga em Campos Elétricos	91
Apresentando a reatância capacitiva	92
Saindo de fase: A corrente leva a tensão	
Preservando a energia	
Circuitos e Indutores CA: Armazenando Energia em Campos Magnéticos	
Lei de Faraday: Entendendo como os indutores funcionam	
Apresentando a reatância indutiva	
Ficando para trás: A corrente se atrasa em relação à tensão	
A Corrida Corrente-Tensão: Colocando Tudo Junto em Circuitos RLC em Série	
Impedância: Os efeitos combinados de resistores, indutores e capacitores	
Experiências de Pico: Calculando a Corrente Máxima em um Circuito RLC em Série	
Anulando a reatância	109

Calculando a frequência de ressonância	109
Semicondutores e Diodos: Limitando a Direção da Corrente	110
Adicionando uma "droga": a fabricação de semicondutores	111
Corrente unidirecional: a criação de diodos	112
Parte III: Pegando Ondas: Sonoras e Luminosas	113
Capítulo 6: Explorando Ondas	115
A Energia se Movimenta: Fazendo Onda	115
Para cima e para baixo: Ondas transversais	116
Para trás e para frente: Ondas longitudinais	117
Propriedades das Ondas: Entendendo o que Faz as Ondas Vibrarem	117
Examinando as partes de uma onda	117
Relacionando matematicamente as partes de uma onda	119
Ficando atento ao seno: Gráficos de ondas	121
Quando as Ondas Colidem: O Comportamento das Ondas	124
Capítulo 7: Agora Ouça Isto: A Palavra no Som	127
Vibrando Apenas Para Ser Ouvido: Ondas Sonoras como Vibrações	
Aumentando o Volume: Pressão, Potência e Intensidade	129
Sob pressão: Medindo a amplitude das ondas sonoras	130
Apresentando a intensidade do som	131
Calculando a Velocidade do Som	133
Rápida: A velocidade do som em gases	134
Mais rápida: A velocidade do som em líquidos	136
Mais rápida ainda: A velocidade do som em sólidos	137
Analisando o Comportamento das Ondas Sonoras	139
O eco: Reflexão das ondas sonoras	139
Compartilhando espaços: Interferência de ondas sonoras	141
Regras de flexão: Difração de ondas sonoras	148
Indo e vindo com o efeito Doppler	149
Quebrando a barreira do som: Ondas de choque	152
Capítulo 8: Vendo a Luz: Quando a Eletricidade e o Magnetismo	
se Combinam	155
Haja Luz! Gerando e Recebendo Ondas Eletromagnéticas	155
Criando um campo elétrico alternado	156
Obtendo um campo magnético alternado para equiparar	157
Recebendo ondas de radio	159
Olhando Para o Arco-Íris: Entendendo o Espectro Eletromagnético	161
Evaminando o espectro eletromagnético	161

Capítulo 11: Lançando Luz Sobre Interferência de Ondas de Luz e Difração) 221
Quando as Ondas Colidem: Apresentando a Interferência da Luz	222
Encontro nas barras: Em fase com a interferência construtiva	222
Deixando tudo escuro: Fora de fase com interferência destrutiva	224
A Interferência em Ação: Obtendo Duas Fontes de Luz Coerentes	226
Dividindo a luz com fendas duplas	
Arco-íris de poças de gasolina: Dividindo a luz com interferência de filme fino	231
Difração de Fenda Única: Recebendo Interferência de Ondulações	
O princípio de Huygens:Verificando como a difração funciona com uma fenda única	
Obtendo as franjas no padrão de difração	237
Fazendo cálculos de difração	
Fendas Múltiplas: Chegando ao Limite com Rede de Difração	241
Separando cores com grades de difração	
Experimentando alguns cálculos de grades de difração	
Vendo com Clareza: O Poder de Resolução e de Difração a Partir de um Orifício	243
Parte IV: A Física Moderna	247
Capítulo 12: Preste Atenção ao que Einstein Disse: A Relatividade Especial	249
Decolando com os Fundamentos da Relatividade	250
Comece a partir de onde você está: Entendendo sistemas de referência	250
Observando os postulados da relatividade especial	252
Verificando a Relatividade Especial em Funcionamento	253
Tempo de desaceleração: Descontraindo com a dilatação do tempo	254
Fazendo a compactação: A contração do comprimento	259
Ganhando momento próximo à velocidade da luz	
Aqui Está Ela! Igualando Massa e Energia com E = mc^2	264
A energia de repouso de um objeto: A energia que você	265
poderia obter a partir da massa	
A energia cinética de um objeto: A energia do movimento	
Omitindo a E _p	
Capítulo 13: Entendendo Energia e Matéria como Partículas e Ondas	
Radiação de Corpo Negro: Descobrindo a Natureza Corpuscular da Luz	
Entendendo o problema com radiação de corpo negro	
Mantendo a discrição com a constante de Planck	
Pacotes de Energia de Luz: Avançando com o Efeito Fotoelétrico	
Compreendendo o mistério do efeito fotoelétrico	276

A contribuição de Einstein: Apresentando os fótons	277
Explicando por que a energia cinética dos elétrons	
não depende da intensidade	279
Explicando por que os elétrons são emitidos instantaneamente	280
Fazendo cálculos com o efeito fotoelétrico	281
Colisões: Demonstrando a Natureza da Partícula da Luz com o Efeito Compton	282
O Comprimento de Onda de De Broglie: Observando a Natureza Ondulatória da Matéria	285
Elétrons interferentes: Confirmando a hipótese de De Broglie	286
Calculando comprimentos de onda da matéria	286
Não Tenho Certeza Sobre Isso: O Princípio da Incerteza de Heisenberg	288
Entendendo a incerteza na difração de elétrons	
Deduzindo a relação de incerteza	289
Cálculos: Observando o princípio da incerteza em ação	
Capítulo 14: Uma Pequena Visualização: A Estrutura dos Átomos	295
Compreendendo o Átomo: O Modelo Planetário	
O Espalhamento de Rutherford: Encontrando o Núcleo a Partir do Espalhamento de Partículas Alfa	
Átomos em colapso: Desafiando o modelo planetário de Rutherford	
Respondendo aos desafios: Mantendo a discrição com a linha espectral	
Ajustando o Modelo Planetário do Átomo de Hidrogênio: O Modelo de Bohr	
Encontrando as energias permitidas dos elétrons no átomo de Bohr	
Encontrando os raios permitidos das órbitas dos elétrons no átomo de Bohr.	
Encontrando a constante de Rydberg usando a linha espectral do hidrogênio	306
Colocando tudo isso junto com diagramas de níveis de energia	307
De Broglie pondera sobre a teoria de Bohr: Dando uma razão para a quantização	
Configuração do Elétron: Relacionando a Física Quântica ao Átomo	
Compreendendo os quatro números quânticos	
Cálculos numéricos: Calculando o número de estados quânticos	
Átomos de múltiplos elétrons: Acrescentando elétrons com o princípio de exclusão de Pauli	
Usando notação abreviada para a configuração eletrônica	
Capítulo 15: Física Nuclear e Radioatividade	
Mexendo com a Estrutura Nuclear	
Agora um pouco de química: Classificação da massa e do número atômico	
Números de nêutrons: Apresentando os isótopos	
Rapaz, como isso é pequeno: Encontrando o raio e o volume do núcleo	
Calculando a densidade do núcleo	
A Poderoca Forca Nuclear: Mantendo o Núcleo Bastante Estável	324

Encontrando a força de repulsão entre prótons	325
Mantendo os prótons juntos com a força forte	325
Segure firme: Encontrando a energia de ligação do núcleo	327
Entendendo os Tipos de Radioatividade, a partir de α a γ	328
Liberando hélio: Decaimento alfa radioativo	
Ganhando prótons: Decaimento beta radioativo	331
Emissão de fótons: Decaimento gama radioativo	332
Pegue Seu Contador Geiger: Meia-Vida e Decaimento Radioativo	333
Meio-tempo: Apresentando a meia-vida	334
Taxas de decaimento: Apresentando a atividade	336
Parte V: A Parte dos Dez	339
Capítulo 16: Dez Experimentos de Física que Mudaram o Mundo	
Medição da Velocidade da Luz de Michelson	
Experiência de Fendas Duplas de Young: A Luz é Uma Onda	
Elétrons Saltadores: O Efeito Fotoelétrico	
Descoberta de Ondas de Matéria de Davisson e Germer	
Os Raios-X de Röntgen	
Descoberta da Radioatividade Por Marie Curie	
A Descoberta do Núcleo do Átomo de Rutherford	
Colocando Uma Rotação Nele: A Experiência de Stern-Gerlach	
A Idade Atômica: A Primeira Pilha Atômica	
Verificação da Relatividade Especial	346
Capítulo 17: Dez Ferramentas On-Line para Resolução de Problemas	347
Calculadora de Soma de Vetores	347
Calculadora de Aceleração Centrípeta (Movimento Circular)	347
Calculadora de Energia Armazenada em um Capacitor	348
Calculadora de Frequência de Ressonância Elétrica	348
Calculadora de Reatância capacitiva	349
Calculadora de Reatância Indutiva	349
Calculadora de Frequência e Comprimento de Onda	349
Calculadora de Contração do Comprimento	350
Calculadora da Relatividade	350
Calculadora de Meia-vida	351
Índice	353

Introdução

ara muitas pessoas, a Física é algo aterrorizante. E os cursos de Física II realmente introduzem muitos conceitos alucinantes, como as ideias de que massa e energia são aspectos da mesma coisa, que a luz é apenas uma mistura de campos elétricos e magnéticos, e que cada elétron girando em torno de um átomo cria um imã em miniatura. Em Física II, as cargas saltam, a luz se dobra e o tempo se estende — e não porque a turma parou de prestar atenção no meio da aula. Jogue um pouco de matemática na mistura e, muitas vezes, parece que a Física leva sempre a melhor. E isso é uma pena, porque a Física não é sua inimiga — ela é sua aliada.

As ideias podem ter vindo de Albert Einstein e de outras pessoas que conseguiram dar seus nomes a leis, constantes e unidades de medidas, mas você não precisa ser um gênio para entender Física II. Afinal, ela é uma ciência que trata de foguetes de maneira apenas parcial — e foguetes muito legais, que se aproximam da velocidade da luz.

Muitas descobertas nesse campo vieram de estudantes, pesquisadores e outras pessoas que simplesmente tiveram curiosidade sobre seu mundo, que fizeram experiências e, muitas vezes, o resultado não foi o esperado. Neste livro, eu lhe apresento algumas dessas descobertas, analiso a matemática que descreve seus resultados e dou-lhe uma ideia de como as coisas funcionam — da forma como os físicos as entendem.

Sobre Este Livro

Física II Para Leigos® é para a mente curiosa. Seu objetivo é explicar centenas de fenômenos que você pode observar ao seu redor. Por exemplo, como a luz polarizada realmente funciona? Por que os eletroímãs nos motores elétricos geram magnetismo? E se alguém lhe der um grama de material radioativo com meia-vida de 22 mil anos, você deve entrar em pânico?

Estudar Física é estudar o mundo. O seu mundo. Esse é o tipo de perspectiva que tomo neste livro. Aqui, eu tento relacionar a Física à sua vida, e não o contrário. Assim, nos próximos capítulos, você vai ver como telescópios e microscópios funcionam e descobrirá o que faz um

diamante cortado corretamente tão brilhante. Você vai descobrir como as antenas de rádio captam sinais e como os imãs fazem os motores funcionar. Você vai ver quão rapidamente a luz e o som podem viajar, e vai ter uma ideia do que realmente significa alguma coisa se tornar radioativa.

Quando você entender esses conceitos, vai perceber que a matemática na física não é um desfile de problemas com palavras terríveis; é uma forma de ligar medidas reais a toda aquela teoria. Fique tranquilo, pois a matemática que uso neste livro é relativamente simples — as equações não exigem qualquer outro conhecimento além da álgebra e da trigonometria.

Física II Para Leigos® começa onde um curso de Física I acaba — depois do estudo das leis do movimento, forças, energia e termodinâmica. As aulas de Física I e Física II algumas vezes se sobrepõem, de forma que você encontrará informações sobre eletricidade e magnetismo nos dois livros (Física e Física II Para Leigos®). Mas, em Física II Para Leigos®, eu abordo esses tópicos com mais profundidade.

Uma boa coisa sobre este livro é que você decide onde começar e o que ler. É um guia de referência através do qual você pode navegar como quiser, basta consultar o Sumário e o Índice para encontrar a informação que você quer.

Convenções Usadas Neste Livro

Alguns livros têm várias convenções absurdas que você precisa conhecer antes de começar a leitura. Não é o que acontece com este livro. Tudo que você precisa saber é o seguinte:

- Novos termos aparecem em itálico, desta forma, e estão acompanhados por uma definição.
- ✓ Variáveis, como m para massa, aparecem em itálico. Caso você encontre uma letra ou abreviação em um cálculo e ela não estiver em itálico, trata-se de uma unidade de medida; por exemplo, 2,0 m correspondem a 2,0 metros.
- ✓ Vetores esses itens que têm tanto uma magnitude como uma direção — aparecem em negrito e itálico, como este: N.

E essas são todas as convenções que você precisa conhecer!

Só de Passagem

Além do texto principal do livro, eu incluí alguns elementos extras que poderão ser esclarecedores ou interessantes: boxes e parágrafos sinalizados com o ícone Papo de Especialista. Os boxes aparecem em quadros cinza

sombreado, e lhe darão alguns bons exemplos, ou contarão histórias que acrescentam um colorido ou mostram como a história principal da Física se ramificou. Os parágrafos de Papo de Especialista vão lhe dar um pouco mais de informação técnica sobre o assunto em questão. Você não precisará resolver esses problemas: poderá ficar apenas curioso.

Se estiver com pressa, poderá pular esses elementos sem ferir meus sentimentos. Mesmo sem eles, você ainda entenderá a história principal.

Penso que...

Neste livro, eu presumi o seguinte:

- Você é um estudante que já está familiarizado com um texto de Física I, como *Física para Leigos*. Você não precisa ser um especialista. Desde que tenha um conhecimento razoável desse material, já estará bom. Você deve entender ideias como, massa, velocidade, força, e assim por diante, mesmo que não se lembre das fórmulas.
- ✓ Você está familiarizado com o sistema métrico, ou SI (Sistema Internacional de Unidades) e é capaz de fazer a conversão entre unidades de medida e sabe como usar prefixos métricos. Eu incluo uma revisão de como trabalhar com medidas no Capítulo 2.
- ✓ Você sabe álgebra e trigonometria básicas. Eu lhe direi o que for necessário no Capítulo 2, de forma que não precise se preocupar. Este livro não requer nenhum cálculo e você poderá fazer todas as contas em uma calculadora científica padrão.

Como Este Livro Está Organizado

Como a própria Física, este livro está organizado em diferentes partes. A seguir, estão as partes e o assunto de que tratam.

Parte 1: Entendendo os Fundamentos da Física

A Parte I começa com uma visão geral da Física II, introduzindo os objetivos da Física e os principais tópicos abordados em um curso padrão de Física II. Esta parte também vai atualizá-lo com os fundamentos da Física I — apenas aquilo que você precisa para este livro. Não se pode construir sem alicerces e você terá a base de que precisa aqui.

Parte II: Fazendo Algum Trabalho de Campo: Eletricidade e Magnetismo

A eletricidade e o magnetismo correspondem a uma grande parte da Física II. Ao longo dos anos, os físicos têm conseguido explicar muito bem esses tópicos. Nesta parte, você estudará a eletricidade e o magnetismo, incluindo informações sobre cargas individuais, circuitos CA (corrente alternada), imãs permanentes e campos magnéticos — e (possivelmente a mais importante), você compreenderá como a eletricidade e o magnetismo se conectam para criar ondas eletromagnéticas (como na luz).

Parte III: Pegando Ondas Sonoras e Luminosas

Esta parte abrange ondas em geral, incluindo as ondas sonoras e luminosas. Das duas, a luz é o tópico mais abrangente — você poderá ver como as ondas interagem e interferem umas com as outras, assim como a forma como elas agem quando atravessam fendas simples e duplas, refletindo objetos, atravessando o vidro e a água, e outros tipos de coisas. O estudo da ótica inclui objetos do dia-a-dia, como lentes, espelhos, câmeras, óculos de sol com lentes polarizadas e mais.

Parte IV: A Física Moderna

Esta parte vai levá-lo aos tempos modernos com a teoria da relatividade especial, a dualidade partícula-onda da matéria, e a radioatividade. A relatividade é aquela famosa, é claro, e você vai ver muito de Einstein nesta parte. Você também vai ver muitos outros físicos que participaram da discussão das viagens da matéria como ondas. Você vai ler tudo sobre radioatividade e estrutura atômica.

Parte V: A Parte dos Dez

Os capítulos nesta parte abrangem dez tópicos em uma sucessão rápida. Você vai dar uma olhada em dez experimentos da física que mudaram o mundo, levando a descobertas em todas as áreas, desde a relatividade especial até a radioatividade. Você também poderá consultar dez calculadoras on-line, que poderão ajudá-lo a resolver problemas de física.

Ícones Usados Neste Livro

Você vai encontrar ícones neste livro e a seguir está o que eles significam:

Este ícone indica alguma coisa que deve ser lembrada, como uma lei da Física ou uma equação particularmente importante.

As Dicas oferecem formas de pensar nos conceitos da Física que poderão ajudá-lo a entender melhor um tópico. Elas também poderão lhe dar dicas e mostrar pequenos truques para resolver problemas.

Este ícone indica que aquele parágrafo trata sobre detalhes técnicos, informações profissionais. Você não precisa ler, mas se quiser se tornar um profissional em Física (e quem não quer?), dê uma olhada.

De Lá para Cá, Daqui para Lá

Neste livro, é possível começar uma leitura em qualquer lugar. Você pode começar com eletricidade ou ondas luminosas, ou mesmo relatividade. Mas se quiser a história completa, comece pelo Capítulo I, que está logo adiante. Boa leitura!

Caso não se sinta confortável com o nível de física que adquiriu em Física I, consulte um texto de Física I. Eu recomendo, seguramente, *Física Para Leigos*[®].

Parte I

Entendendo os Fundamentos da Física

A 5^a Onda

Por Rich Tennant

"Este é meu antigo professor de física, Mr. Wendt, sua esposa, Doris, e seus dois filhos, Campo Elétrico e Magnetismo.

Nesta parte...

esta parte, você se certificará de que está atualizado sobre as habilidades de que procios por Esta atualizado sobre as habilidades de que precisa para Física II. Você começará com uma visão geral dos assuntos que abordo neste livro. Também fará uma breve revisão de Física I, para ter a certeza de que tem uma boa base em matemática, medidas e nas principais ideias da Física básica.

Capítulo 1

Entendendo Seu Mundo: Física II, a Sequência

Neste Capítulo

- Considerando a eletricidade e o magnetismo
- Estude as ondas sonoras e luminosas
- Explore a relatividade, radioatividade e outras físicas modernas

.

Física certamente não é um estudo esotérico presidido por guardiães que o obrigam a fazer testes sem outro motivo aparente que não seja a crueldade, embora, às vezes, possa parecer que seja essa a intenção. A Física é o estudo humano do *seu* mundo. Assim, não pense na física como alguma coisa que existe apenas em livros e nas cabeças de professores, deixando todas as outras pessoas de fora.

A Física é simplesmente o resultado de uma mente curiosa observando a natureza. E isso é algo que qualquer um pode compartilhar. As perguntas — o que é a luz?, Por que os imãs atraem o ferro?, A velocidade da luz é a mais rápida em que se pode viajar? — dizem respeito a qualquer pessoa igualmente. Assim, não deixe a Física amedrontá-lo. Tenha coragem e reivindique sua propriedade sobre o assunto. Caso não entenda alguma coisa, exija que ela seja mais bem explicada para você — não suponha que a falha seja sua. Esse é o estudo humano do mundo natural, e você possui um pedaço disso.

A Física II continua onde a Física I termina. O objetivo deste livro é abordar — e desvendar — os assuntos normalmente abrangidos no segundo semestre de um curso de introdução à Física. Você aprenderá muito sobre eletricidade e magnetismo, ondas luminosas, relatividade (o tipo especial), radioatividade, ondas da matéria e mais. Este capítulo lhe dará uma prévia.

Familiarizando-se com a Eletricidade e o Magnetismo

A eletricidade e o magnetismo estão entrelaçados. Cargas elétricas em movimento (e não cargas inertes, estáticas) dão origem ao magnetismo. Mesmo em imãs em barra, as minúsculas cargas dentro dos átomos do metal provocam o magnetismo. É por isso que você sempre vê esses dois temas ligados nas discussões de Física II. Nesta seção, eu apresento a eletricidade, o magnetismo e os circuitos CA.

Estudando as cargas estáticas e campo elétrico

A eletricidade abrange uma grande parte do seu mundo — ela não atua apenas em relâmpagos e lâmpadas elétricas. A configuração das cargas elétricas em cada átomo forma a base da química. Conforme eu analiso no Capítulo 14, o arranjo dos elétrons dá origem às propriedades químicas da matéria, que nos dão tudo, desde metais que brilham até plásticos que dobram. A configuração dos elétrons determina até mesmo a cor que os materiais refletem quando estão na presença da luz.

Os estudos da eletricidade geralmente começam com cargas elétricas, particularmente a força entre duas cargas. O fato de as cargas se atraírem ou se repelirem é fundamental para o funcionamento da eletricidade e para a estrutura dos átomos que compõem a matéria ao seu redor. No Capítulo 3, você conhecerá a maneira de prever a força exata envolvida e como essa força varia com a distância que separa as duas cargas.

As cargas elétricas também preenchem o espaço ao redor de si mesmas com campo elétrico — um fato familiar a você, se já sentiu os pelos em seu braço se eriçarem quando tira roupas de uma secadora. Os físicos medem o campo elétrico como a força por unidade de carga, e eu lhe mostrarei como calculá-lo a partir das configurações das cargas.

Em seguida, está a ideia de *potencial elétrico*, que você conhece como tensão. A *tensão* é o trabalho realizado por unidade de carga, tomando essa carga entre dois pontos. E, sim, é exatamente esse o tipo de tensão que você vê estampada em baterias.

Com essas três quantidades — força, campo elétrico e tensão — você compreenderá as cargas elétricas estáticas.

Avançando para o magnetismo

O que acontece quando cargas elétricas começam a se mover? Temos o *magnetismo*, que é o efeito da carga elétrica que está relacionada a, mas diferente de campo elétrico; ele existe apenas quando as cargas estão em movimento. Dê um empurrão em um elétron, mande-o para longe e pronto! Você terá um campo magnético. A ideia de que o movimento de cargas elétricas provoca o magnetismo foi uma grande novidade na física — esse fato não é óbvio quando se trabalha apenas com imãs.

As cargas elétricas em movimento formam uma *corrente*, e várias combinações da corrente elétrica criam diferentes campos magnéticos. Isto é, o campo magnético que você vê a partir de um único fio conduzindo uma corrente é diferente daquele que você vê a partir de um "loop" ou laço da corrente — ainda mais se considerarmos vários laços da corrente, uma combinação conhecida como *solenoide*. Eu vou mostrar-lhe como prever campos magnéticos no Capítulo 4.

Não são as cargas elétricas em movimento dão origem a campos magnéticos, como os campos magnéticos também afetam as cargas elétricas em movimento. Quando uma carga elétrica se move através de um campo magnético, ela sente uma força sobre ela perpendicular ao campo magnético e à direção do movimento. O resultado é que, entregues a si próprias, as cargas em movimento em campos magnéticos uniformes viajam em círculos (uma ideia bem recebida pelos químicos porque isso permite a um espectrômetro de massa determinar a composição química de uma amostra). De que tamanho é o círculo? Como o raio do círculo se relaciona com a velocidade da carga? Ou com a magnitude da carga? Ou com a força do campo magnético? Fique ligado. As respostas a todas essas perguntas estão no Capítulo 4.

Circuitos CA: A regeneração da corrente com campos elétricos e magnéticos

Muitas vezes, os estudantes entram em contato com circuitos em Física I (você pode saber mais sobre circuitos de corrente simples direta — CD — em *Física para Leigos*). No Capítulo 5, você terá a versão da Física II: Poderá observar o que acontece quando a tensão e a corrente em um circuito flutuam ao longo do tempo de forma periódica, gerando *correntes* e *tensões alternadas*. Também encontrará alguns novos elementos do circuito, o indutor e o capacitor, e verá como eles se comportam em circuitos CA. Muitos dos dispositivos elétricos que as pessoas usam todos os dias dependem desses elementos em correntes alternadas.

Quando estiver lendo sobre indutores, você também encontrará uma das leis fundamentais que relaciona campos elétricos e magnéticos: a lei de Faraday, que explica a maneira como um campo magnético variável induz uma tensão que gera seu próprio campo magnético. Essa lei não se aplica apenas a indutores; ela pode ser aplicada a todos os campos elétricos e magnéticos, onde quer que eles ocorram no Universo!

Viajando nas Ondas

As ondas constituem um assunto bastante abrangente em Física II. Uma onda é uma perturbação oscilante que transporta energia. Se a perturbação for periódica, a quantidade de perturbações se repete ao longo do espaço e do tempo por uma distância chamada comprimento da onda e um tempo chamado período. O Capítulo 6 faz um estudo aprofundado sobre o funcionamento das ondas, de forma que você possa perceber os relacionamentos entre a velocidade da onda, o comprimento da onda e a frequência (a taxa na qual os ciclos passam por um ponto específico). No restante dos capítulos, na Parte III deste livro, você vai explorar tipos particulares de ondas, incluindo as eletromagnéticas (como as ondas luminosas e do rádio) e sonoras.

Convivendo com as ondas sonoras

O som é simplesmente uma onda no ar, e as várias interações das ondas sonoras são apenas o resultado de comportamentos compartilhados por todas elas. Por exemplo, as ondas sonoras podem refletir em uma superfície — deixe as ondas sonoras colidirem com paredes e ouça o eco. As ondas sonoras também interferem em outras ondas, e você pode ouvir os efeitos — ou o silêncio, conforme o caso. Esses dois tipos de interação formam a base para se entender os tons harmônicos na música.

As características de um som, como tom e volume, dependem das propriedades da onda. Você já pode ter observado isso ao ouvir a mudança de tom de uma sirene em um carro de polícia quando ele passa; o tom muda quando a origem do som ou o ouvinte se movem. A isso chamamos *efeito Doppler*. Podemos levar isso ao extremo, ao examinarmos o choque de ondas que acontece quando os objetos se movem muito rapidamente através do ar, quebrando a barreira do som. Essa é a origem da explosão sônica. Isso será abordado no Capítulo 7.

Descobrindo o que é a luz

A luz é um tema bastante abordado em Física II. Hoje já se sabe como a luz funciona, mas nem sempre foi assim. Imagine a emoção que James Clerk Maxwell deve ter sentido quando a velocidade da luz

pulou de suas equações e ele percebeu que, ao combinar eletricidade e magnetismo, tinha conseguido definir as ondas luminosas. Antes disso, elas eram um mistério — de onde tinham surgido? Como eram capazes de transportar energia?

Depois de Maxwell, tudo isso mudou; os físicos passaram a saber que a luz era composta de oscilações elétricas e magnéticas. No Capítulo 8, você vai acompanhar os passos de Maxwell até chegar a esse resultado surpreendente. Aí você saberá como calcular a velocidade da luz usando duas constantes completamente diferentes, que têm a ver com a maneira como os campos elétricos e magnéticos podem penetrar no espaço vazio.

Sendo uma onda, a luz transporta energia enquanto viaja, e os físicos sabem como calcular a quantidade de energia que ela pode carregar. Essa quantidade de energia está ligada às magnitudes dos componentes elétricos e magnéticos da onda. Você terá uma noção da quantidade de energia que essa luz de determinada intensidade pode transportar no Capítulo 8.

Evidentemente, a luz é apenas a parte visível do *espectro eletromagnético* — e uma pequena parte, melhor dizendo. Existem todos os tipos de radiação eletromagnética, classificadas pela frequência das ondas: raios X, infravermelho, luz ultravioleta, ondas de rádio, micro-ondas, e até as ondas gama ultrapotentes.

Reflexão e refração: Fazendo a luz saltar e curvar

A interação da luz com a matéria é uma coisa interessante. Por exemplo, quando a luz interage com materiais, um pouco da luz é absorvida e um pouco refletida. Esse processo dá origem a tudo que vemos ao nosso redor no mundo cotidiano.

A luz refletida obedece a determinadas regras. Principalmente o ângulo de incidência de um raio de luz — isto é, o ângulo no qual a luz atinge a superfície (medido a partir de uma linha reta saindo dessa superfície) — deve ser igual ao ângulo de reflexão — o ângulo em que a luz deixa a superfície. Saber a maneira como a luz retorna em direção à região de onde é oriunda é essencial para todos os tipos de dispositivos, desde periscópios nos submarinos, até telescópios, fibras óticas e os refletores que os astronautas da Apollo colocaram na Lua. O Capítulo 10 aborda as regras da reflexão.

Obviamente, a luz também pode viajar através de materiais (ou as pessoas não teriam janelas, óculos de sol, vitrais e outras coisas mais). Quando a luz penetra em um material a partir de outro, ela se curva — processo conhecido como *refração*, que é um tema abrangente no Capítulo 9. O quanto a luz se curva depende dos materiais envolvidos, conforme medido pelos seus índices de refração. Uma coisa útil para se saber em todos os tipos de situação. Por exemplo, quando

os fabricantes de lentes entendem como a luz se curva quando penetra e sai de um pedaço de vidro, eles podem moldar o vidro para produzir imagens. A seguir, você vai olhar através de lentes.

Buscando imagens: Lentes e espelhos

Caso você esteja ansioso para observar as aplicações práticas dos assuntos da Física II, provavelmente você gosta de ótica. Nela, você trabalha com lentes e espelhos, permitindo-lhe explorar o funcionamento de telescópios, câmeras e mais.

Concentrando-se nas lentes

As lentes podem convergir ou divergir a luz. Nos dois casos, você obterá uma imagem (direita, invertida, maior ou menor do que o objeto). A imagem pode ser real ou virtual. Em uma *imagem real*, os raios da luz são convergentes, de forma que podemos colocar uma tela no local da imagem e enxergá-la na tela (como nos filmes). Uma *imagem virtual* é uma imagem a partir da qual a luz parece divergir, como a imagem em uma lupa.

Equipado com um pouco de física, você terá a situação das lentes completamente sob controle. Caso tenha aptidão visual, você poderá encontrar informações sobre imagens usando suas habilidades com desenho. Eu explico como desenhar diagramas de raios, que mostram como a luz passa através de uma lente, no Capítulo 9.

Você também pode usar números em relação a luz passando através de lentes. A equação da lente fina lhe fornecerá tudo que precisa saber aqui sobre objetos e imagens, e poderá até mesmo deduzir a ampliação de lentes a partir daquela equação. Assim, dada uma determinada lente e um objeto a certa distância, você poderá prever exatamente onde a imagem aparecerá e qual tamanho terá (e se estará invertida ou não).

Se uma lente é boa, por que não experimentar duas? Ou mais? Afinal, essa é a ideia por trás de microscópios e telescópios. Você saberá mais sobre esses instrumentos óticos no Capítulo 9, e, se quiser, poderá desenhar microscópios e telescópios rapidamente.

Tudo sobre espelhos/sohlepse erbos odut

Também podemos utilizar números ao observar a maneira como os espelhos refletem a luz, sejam eles planos ou curvos. Por exemplo, se você souber a curvatura de um espelho e onde um objeto se encontra em relação a ele, você poderá prever exatamente onde a imagem do objeto aparecerá.

De fato, você será capaz de fazer mais do que isso — poderá calcular se a imagem será perpendicular ou invertida. Também poderá calcular sua altura exata comparada ao objeto original. Poderá até mesmo calcular se a imagem será real (na frente do espelho) ou virtual (atrás do espelho). Eu trato de espelhos no Capítulo 10.

Chamando a interferência: Quando a luz colide com a luz

Não só podem os raios de luz interagir com a matéria, mas também interagir com outros raios de luz. Isso não deveria soar muito absurdo — afinal, a luz é composta de componentes elétricos e magnéticos, e esses componentes são os que interagem com os campos magnéticos na matéria. Dessa forma, por que esses componentes não poderiam interagir com componentes elétricos e magnéticos de outros raios de luz?

Quando o componente elétrico de um raio de luz está no seu máximo e encontra um raio de luz com seu componente elétrico no seu mínimo, os dois componentes se anulam. Por outro lado, caso os dois raios de luz se encontrem exatamente onde os componentes elétricos estejam no máximo, eles se somam. O resultado é que quando a luz colide com a luz, poderão ocorrer padrões de *difração* — combinações de luz e faixas escuras, dependendo se o resultado está em um máximo ou mínimo. No Capítulo 11, você aprenderá a calcular a aparência dos padrões de difração para uma variedade de diferentes fontes de luz, e todas comprovadas por experiências.

Ampliando com a Física Moderna

O século XX assistiu a uma explosão de temas relacionados à Física, e, coletivamente, eles foram chamados de Física Moderna. Algumas ideias revolucionárias — como a Mecânica Quântica e a Teoria da Relatividade Especial de Einstein — mudaram os fundamentos de como os físicos viam o Universo; a mecânica de Isaac Newton nem sempre se aplicava. À medida que os físicos se aprofundaram no funcionamento do mundo, eles encontraram ideias cada vez mais poderosas, que lhes permitiram descrevê-lo de forma exponencialmente maior. Isso levou a desenvolvimentos na tecnologia que conduziram a experimentos que poderiam sondar o Universo de forma cada vez mais minuciosa (ou expansiva).

A maioria das pessoas já ouviu falar da relatividade e da radioatividade, mas você pode não estar familiarizado com outros tópicos, como *ondas da matéria* (o fato de que quando a matéria viaja, ela exibe muitas propriedades parecidas com ondas, assim como a luz) ou *radiação do corpo negro* (o estudo que mostra como objetos quentes emitem luz). Eu lhe apresento algumas dessas ideias da Física Moderna nesta seção.

Iluminando os corpos negros: Corpos quentes produzem sua própria luz

Se você já viu uma lâmpada incandescente funcionando (ou se já olhou para o Sol), já sabe que as coisas quentes emitem luz. De fato, qualquer corpo, com um pouco de calor que seja, emite ondas eletromagnéticas, como a luz.